
Supplemental Information for: Preference distributions of primary motor cortex
neurons reflect control solutions optimized for limb biomechanics

Timothy P. Lillicrap1,2∗, Stephen H. Scott2,3∗
1Department of Pharmacology,
University of Oxford, Oxford, United Kingdom
2Centre for Neuroscience Studies, 3Department of Biomedical and Molecular Sciences,
Queen’s University, Kingston, Ontario, Canada

∗To whom correspondence should be addressed:
E-mail: timothy.lillicrap@pharm.ox.ac.uk (T.P.L.); steve.scott@queensu.ca (S.H.S.)

Supplemental Experimental Procedures:

Here we present the experimental, mathematical, and computational details which are neces-
sary to allow replication of our results. We also briefly explain the statistics used to access
bimodality in circular distributions.

Empirical results. Single neurons were recorded in primary motor cortex (M1) contralateral
to the arm used to perform the task. In all four monkeys, neurons were recorded in the left
hemisphere. In the fourth monkey, neurons were also recorded in the right hemisphere while
the monkey performed the tasks with its left arm. For the reaching task, the average spike
rate was averaged from 100 ms before movement onset (determined as 10% of peak hand
velocity) through to peak hand velocity. The tuning of each neuron was assessed using planar
regression, with the targets as the independent variable and the average spike rate of the
neuron as the dependent variable. The orientation of the fitted plane defined the Preferred
Movement Direction (PMD) of the neuron. The PMDs of the neurons recorded in the right
hemisphere of the fourth monkey were mirror flipped about the vertical axis. In the posture
task, the spike rate was averaged over a two second interval after the monkey had stabilized
its hand over the target. Neural tuning was again assessed using planar regression, with the
loads as the independent variables and the spike rate as the dependent variable. Muscle
data was analyzed in a similar fashion and was taken from a previous study (Kurtzer et al.
2006).

Muscle activation. For muscle activation in our dynamic model, σu, we used a smooth version
of a ramp function which is 0 for values less than or equal to zero and linear for values greater
than zero. We used a smoothed version of the ramp function because gradient descent worked
better if nonzero derivatives exist over the range of the function (i.e. tended to get caught in bad
local minima less often). The particular function used was σu(x) = exp(2x − 5) for values less
than 1

10 , and σu(x) = 2x exp(2
10 − 5) for values greater than or equal to 1

10 . The particular form
of this function was chosen to be simple and to hasten optimization. Note that another means
of keeping muscle activity positive would be to use a linear function for u(t) and then optimize

1

subject to the inequality constraint, u(t) ≥ 0, see for example (Shah et al. 2004; Trainin et al.
2007). We expect that this approach would produce qualitatively similar results.

Sensory feedback filtering. In our dynamic network model, the units z(t) received a filtered
version of sensory feedback and goal/load information. The bank of sensory/goal/load filters
we call, v(t), and in practice we used 50 filters. An interpretation of these filters is beyond the
scope of this paper. We think of them simply as providing our M1 units, z(t), with a distributed
and flexible form of the sensory/goal/load information required to produce good control. Note
that we explored two other basic network architectures: one in which the bank of filters - or first
layer of the network - was simply removed, and one in which the bank of filters was removed
and the layer z(t) was allowed recurrent connections amongst its units. Both of these produced
qualitatively similar results but the former had difficulty learning good control solutions with the
same number of neurons (due to a relative lack of flexibility), and the latter took longer to train
due to the number of parameters added by recurrent connections.

Optimization and analysis. We tuned three scalar parameters by hand to ensure a good fit
between real and simulated arm kinematics: α and β, which specify the relative importance of
keeping the muscle activity and neural activity small, and a third scalar, γ, which specifies the
relative importance of keeping network parameters small. In practice all three were set to 10−5,
though a wide range of values gave similar results as long as optimization produced realistic
kinematics. With the exception of the smooth ramp muscle activation function, σu(·), which
was chosen to keep muscle activity positive and be differentiable and give fast optimization,
all other model parameters (i.e. those related to arm and muscle mechanics, see below) were
either taken from literature or else optimized using gradient descent.

The training sets for the network consist of random batches of 100 reaches in the accessible
workspace of the limb. The network is trained in a minibatch mode where updates for 100
random reaches are calculated and applied for a set number of iterations of conjugate gradient
descent, and then another 100 random reaches are drawn and the process is repeated. We
also checked after each optimization that learning produced behaviour which looked similar
to that executed by the monkeys (i.e. the network performed reaches with bell shaped veloc-
ity profiles which were roughly straight in handspace, and qualitatively resemble those pro-
duced by monkeys, and maintained posture within 0.25cm of the target in the loaded-posture
task).

Then, we examined the distribution of preferences of the network using the Rayleigh test for
bimodality (Batschelet 1981; see Bimodal statistics below). We repeated this procedure,
both optimization and analysis, for 10 networks. Each network had 1000 units in z(t), and the
synaptic weights of each network, Wout, were initialized randomly (from a Normal distribution
with a mean of 0 and variance 0.001) prior to the optimization.

Variations on simulation setup. In the Experimental Procedures we have detailed the ba-
sic architecture and details of the network model we employed. We tried varying: [1] the size

2

and structure of the network (e.g. from 100 to 1000 units in , and allowing sparse recurrent
connections between units in z(t)), [2] the unit activation function (e.g. using smooth ramp
and tanh(·) functions instead of the standard sigmoid function), [3] the muscle activation func-
tion σu(·) (e.g. using the standard sigmoid instead of the ramp function employed), [4] the
regularization scalars α and β which weighted the importance of keeping neural and muscle
activity small (e.g. combinations of values between 10−4 and 10−7), [5] the distribution from
which elements of Wout were drawn (e.g. the Uniform distribution centred on 0 and the Normal
distribution with different levels of variance), [6] the movement duration (between 300-450ms),
[7] integration timestep (between 10-40ms), [8] the form of the peripheral feedback (e.g. giving
feedback in hand-based coordinates instead of joint-based coordinates), and [9] the require-
ment of having a terminal-time cost by instead using an instantaneous cost which penalized
both neural/muscle activity and distance to target at each time step, thus converting the cost
function to that of an infinite-horizon type problem; in this case, the network was required to find
a tradeoff between arriving at the target quickly and keeping neural/muscle activity small.

In all of these cases, as long as the optimization was successful, we observed results qualita-
tively similar to those reported in the main text. There do of course exist extreme parametriza-
tions of the cost function, and network structures that produce results qualitatively different
from those reported. Trivially, if the regularization constants are set too high (e.g. α > 0.1) then
optimization will fail to find kinematic behaviour resembling empirical data – in these cases,
the optimal solution is to simply produce little or no movement, and the usual pattern of unit
preferences is correspondingly disrupted.

As well, we found that if the network structure is such that there is not enough flexibility (in
terms of the muscle activation patterns achievable), then the unit preferences reported in our
results may also be disrupted. We insured flexibility of the unit layer activations, z(t), via either
an input filter layer, or else via recurrent connections among the units in z(t). It is likely that
simple inclusion of additional units in the z(t) vector would also suffice.

Static model analysis. In the static model, nearly all units (>90%) in both the centre-out and
loaded-posture were significantly tuned (p < 0.05) to target velocity and target load. Thus, each
preference distribution consisted of approximately 10,000 unit preferences. As well, the optima
found for each of the 10 repeats for a given condition tended to be qualitatively consistent. For
example, if the mean PMD or PTD distribution was found to be significantly bimodal for a
condition then all 10 repeats exhibited roughly the same bimodal distribution: within a given
condition the standard deviation for distribution orientation, θ, was never greater that 5◦ and for
distribution skews, r, the standard deviation was never greater than 0.01. Finally, it was also
found that for every repeat and condition, if the distribution was found to be bimodal, then a
bootstrap determined it to be highly significant, with p < 10−3 in every case. Thus, we here
report only the mean orientation and skew for each condition.

For all the conditions examined using the static model, the dynamic model made qualitatively
similar predictions. Thus, at least for the conditions examined here (e.g. where reaches were

3

over a distance short enough that our local approximations roughly hold) our static model
appears to be a good approximation to the full dynamic model.

Computational details. All of the simulations were run in Matlab. Gradient descent was ac-
complished via a Matlab optimization package called minFunc (Mark Schmidt 2005; http://
www.cs.ubc.ca/~schmidtm/Software/minFunc.html), similar to the popular minimize.m
(Carl Rasmussen 2006; http://www.mit.edu/~rsalakhu/code_DBM/minimize.m), but found
to be faster and able to find deeper minima for our application. From minFunc, we used a pre-
conditioned non-linear conjugate gradient (PCG) descent algorithm. Other second order gra-
dient descent algorithms were tried (e.g. quasi-Newton with limited-memory BFGS updating
and a preconditioned Hessian-free Newton rule) and gave similar results but were slower than
PCG. Standard stochastic gradient descent was also tried and provided similar results but was
found to be prohibitively slow to be used for the bulk of our simulations.

All of the gradient descent algorithms tried required user supplied partial derivatives to be com-
pute backward in time via backpropogation through-time modified for our model. This was the
most computationally expensive facet of our model and was accomplished via a handcrafted
Mex function written in C. Numeric and automatic computation of gradients were tried but found
to be extremely slow for a network of even moderate size (i.e. > 10 units). The static model
was optimized in the same way as the dynamic model, i.e. using PCG, except that no gradients
through time were required.

Musculoskeletal model specification. In our dynamic model, the mapping from muscle state
and neural command to joint torques is given by: τ(t) = M · h(x(t),u(t)), where h(·, ·) is the
function which computes the force generated by each muscle (taking into account the force-
length-velocity function detailed below). Recall that we have described above how the muscle
activities, u(t), are computed from neural activities. We used a moment arm matrix, M, which
is a rough average of empirical values (Graham & Scott 2003; Trainin et al. 2007):

(
2 −2 0 0 1.5 −2
0 0 2 −2 2 −1.5

)
(1)

We included the dependency of force production on muscle length and velocity. Throughout
this section, the state of the arm, i.e. the shoulder and elbow angles and velocities, are written
for convenience in a couple different ways, x(t) = [θ, θ̇] = [θ1, θ2, θ̇1, θ̇2]; as well, we use θ̈ for
the joint accelerations. We assume a linear and 1-to-1 mapping between arm state and muscle
state. The length and velocity of each muscle, i.e. li and l̇i, are determined by:

li = 1 +
M1,i · (θ0

1,i − θ1)

L0
i

+
M2,i · (θ0

2,i − θ2)

L0
i

(2)

4

l̇i =
M1,i · θ̇1

L0
i

+
M2,i · θ̇2

L0
i

(3)

where the subscripts index into the relevant matrix or vector and L0 and θ0 are the optimal
length matrix and joint angle vector given by:

θ0 = 2π
(

15.0 4.88 n/a n/a 4.5 2.12
n/a n/a 80.86 109.32 92.96 91.52

)
/360 (4)

and,

L0 =
(

7.32 3.26 6.4 4.26 5.95 4.04
)

(5)

In all of these matrices, the column indicates the muscle group and the row (if there is more
than one) indicates the joint. Note that in some cases the optimal angle is given as n/a - in-
dicating that there is no optimal angle for that muscle about that joint. In these equations for
length and velocity, n/a is simply treated as 0. We used averages, weighted by the normalized
physiological cross sectional area (PCSA) of each muscle, for the optimal muscle length, and
optimal joint angles (given as, θ0, and L0) (Cheng & Scott 2000). The normalized PCSA of each
muscle was calculated as the PSCA of the muscle divided by the total PCSA of the relevant
muscle group (Graham & Scott 2003; monoarticular shoulder flexors: Pectoralis major (clav-
icular and sternocostal head), Deltoid anterior, monoarticular shoulder extensors: Deltoid
posterior, Deltoid middle, monoarticular elbow flexors: Brachialis, Brachioradialis, Extensor
carpi radialis longus, monoarticular elbow extensors: Triceps lateral, Triceps long, biartic-
ular flexors: Biceps long, Biceps short, biarticular extensors: Dorsoepitrochlearis, Triceps
long).

The dependence of force on the length and velocity (this function is often referred to as the
force-length and force-velocity curves) of the muscle (in normalized units of L0 and L0 / second
respectively) is here given by a modified version of the equation proposed by Brown et al.
1999:

fl(l) = exp
(
abs

(
lβ − 1
ω

))
(6)

f f v(l, l̇) =

Vmax − l̇

Vmax + (cV0 + cV1)l̇
, l̇ ≤ 0

bV − (aV0 + aV1l + aV2l2)l̇
bV + l̇

l̇ > 0
(7)

5

These functions are poorly behaved, both at zero velocity (e.g. the force-velocity function has
a jump discontinuities in its first derivative), and outside of the physiological range over which
they were fit (e.g. they grow very large very quickly). In order to make sure that learning
with conjugate gradient descent (which depends on the cost function and its derivatives being
smooth) worked properly, we consider the combined force-length and force-velocity function,
which we will call the force-length-velocity curve. This function, given as f f lv = fl(l) · f f v(l, l̇),
scales muscle force multiplicatively.

This function has all of the undesired qualities mentioned above: jump discontinuities in its
derivatives, and exponential growth outside of the physiological ranges for muscle length and
velocity. Thus, we replaced this function in our model with a simple, feedforward sigmoidal
neural network with 5 hidden nodes. We will designate this network function by, f̂ f lv(·, ·). The
network was trained to approximate the f f lv(·, ·) function. The network closely approximates
the force-length-velocity curve over the range of interest (an error of <0.0001 for all points in
the range of physiological interest), has smooth derivatives everywhere, and is nicely bounded
(between 0 and 2). The parameters for the force-length and force-velocity curves are given by
(Brown et al. 1999): β = 1.55, ω = 0.81, ρ = 2.12, Vmax = −7.39, cV0 = −3.21, cV1 = 4.17, bV =

0.62, aV0 = −3.12, aV1 = 4.21, aV2 = −2.67. Thus, since the force-length-velocity curve scales
force multiplicatively, the joint torques are given by: τ(t) = M · h(x(t),u(t)) = M · [u(t)• f̂ f lv(l, l̇)],
if f̂ f lv(l, l̇) is a vector version of the force-length-velocity network function and • is the element-
wise product.

Next, in our model the mapping from arm state and joint torques to arm state change given by:
∆x(t + 1) = f (x(t), τ(t)). In particular, we used the forward dynamics of the two joint limb given
by (Todorov 2004):

θ̈ =M (θ)−1
(
τ − C

(
θ, θ̇

)
− Bθ̇

)
(8)

M(θ) =

(
a1 + 2a2 cos (θ2) I2 + cos (θ2)

I2 + cos (θ2) I2

)
(9)

C
(
θ, θ̇

)
= a2 cos (θ2)

 −θ̇ (2θ̇1 + θ̇2
)

θ̇2
2

 (10)

B =

(
b11 b12
b21 b22

)
(11)

where, a1 = I1 + I2 + m2l21 and a2 = m2l1c1. The length, mass, moment of inertia and distance
from proximal end to the centre of mass of the two segments are: l1 = 0.145 and l2 = 0.284

6

metres; m1 = 0.2108 and m2 = 0.1938 kilograms; I1 = 0.025 and I2 = 0.045 kilograms ·metres2;
c1 = 0.0749 and c2 = 0.0757 metres, respectively (Cheng & Scott 2000).

Finally, the mapping from joint coordinates and velocities to the hand position and velocity in
cartesian space, y(t), is accomplished via the mapping:

y(t) = g(x(t)) =

x
y
ẋ
ẏ

 =

l1 cos (θ1) + l2 cos (θ1 + θ2)
l1 sin (θ1) + l2 sin (θ1 + θ2)

−θ̇1 (l1 sin (θ1) + l2 sin (θ1 + θ2)) + θ̇2 (−l2 sin (θ1 + θ2))
θ̇1 (l1 cos (θ1) + l2 cos (θ1 + θ2)) + θ̇2 (−l2 cos (θ1 + θ2))

 (12)

Note that in this context l1 and l2 refer to segment lengths.

Static model plant approximation. For the static model we approximated the dynamic map-
pings, f (·, ·), g(·), h(·, ·), and M by linearizing their time averaged effect across the first half
of the movement in the case of the reaching task (in the posture task the time average and
momentary values for these mappings are the same near the optima and so no time averaging
was required). These time averaged linearization of the dynamic mappings are respectively
called, F, G, H, and M.

To examine the effect that various abstractions of the muskuloskeletal model had on prefer-
ence distributions, these four matrices were appropriately modified. Muscle F-L/V properties
were removed from the model by setting all the elements of the scaling matrix, H, to 1. To
remove biarticular muscles from the model the corresponding columns of the moment arm
matrix M were removed so that the network could only control the limb via the 4 remaining
monoarticular muscles. To remove “muscles” from the model entirely, so that the network
effectively controlled the limb via a torque actuator at each joint, we removed the non-linear
muscle activation function and set the moment arm matrix M to be the 2 × 2 identity matrix;
i.e. u = Wout · z. To remove intersegmental terms from the arm dynamics so that the network
controlled each joint independently we set the off diagonal terms of F to be zero. Finally, we
dropped the geometry of the limb by setting G to be the 2 × 2 identity matrix, simplifying the
limb to a point-mass controlled by forces.

Bimodal statistics. We characterized the distributions of preferred movement and preferred
torque directions (given as angles φi for i ∈ {1, ...,N} where N is the number of neuron preferred
directions) using the Rayleigh r statistic (Batschelet 1981). In the unimodal case the statistic
captures the skew of the distribution and is given by:

r =
1
N

 N∑

i=1

cos (φi)

2

+

 N∑
i=1

sin (φi)

2 (13)

7

which implies that r ∈ [0, 1] . An r of 0 implies that the distribution of angles is perfectly uni-
formly distributed around the circle. An r of 1 implies that the angles are all oriented in the
same direction. In the paper we have focused primarily on whether a given simulation pro-
duced a bimodal distribution in preferred directions since the empirical distributions of interest
were bimodally distributed. In order to assess the bimodality of a set of angles we use a ver-
sion of the Rayleigh designed for this purpose where the angles in the distribution are simply
doubled:

r =
1
N

 N∑

i=1

cos (2φi)

2

+

 N∑
i=1

sin (2φi)

2 (14)

Note that this statistic is designed to look for bimodal distributions where the two modes are
oriented at 180 degrees from each other. It is not designed to deal with bimodal distributions
where the modes are otherwise oriented.

To assess the significance of these scores we used a simple bootstrap technique wherein we
drew N samples 100,000 times from a uniform distribution on the interval [0, 2π]. For each
draw of N samples, we computed the unimodal and bimodal Rayleigh r scores. We then
examined the likelihood that a particular r observed in an empirical or simulated distribution
with N samples happened by chance by computing where in the bootstrapped distribution it
fell.

If a distribution of angles is determined to be significantly skewed, we find the dominant axis of
the skew, θ, using the following formula (Batschelet 1981):

θ = arctan

 ∑N
i=1 sin (φi)∑N
i=1 cos (φi)

 (15)

In the bimodal case we use the modified version:

θ = mod

1
2

arctan

 ∑N
i=1 sin (φi)∑N
i=1 cos (φi)

 (16)

which gives an angle in the range [0, π].

Biased experience. For these simulations, the plant dynamics were simplified to be a 2D
pointmass. To simulate learning with biased spatial experience in artificial networks, we had
them learn to make reaches where the distribution over movement directions was skewed.
Target directions for training reaches were drawn randomly from a bimodal von Mises distri-
bution with the two modes oriented straight forward and backwards. The standard von Mises

8

distribution is roughly equivalent to a Gaussian distribution over the range [−π, π] and is given
by:

f (x|µ, κ) =
exp(κ cos(x − µ))

2πI0(κ)
(17)

and the bimodal version of this distribution is given by:

f (x|µ, κ) =
exp(κ cos(2(x − µ)))

2πI0(κ)
(18)

where, I0(·), is the modified Bessel function of order 0. In the simulations we parameterized
the distribution using µ = π/2, κ = 1/2, for a skewed distribution with most reaches oriented
away from the body or towards it, and very few reaches to the side. Because this distribution
is highly skewed, we included the standard centre out reaches in the training set in order to
ensure that the network would eventually be able to execute these reaches.

For the 2D point-mass the network outputs and plant dynamics were given as follows: the
output from the network is is converted to the two forces applied to the mass via u(t), where
σu(·) was the standard network sigmoid function, so that the elements of u(t) lie in the interval
[−10, 10]. The point-mass state evolves according to,

∆x(t) = Ax(t − 1) + Bu(t) (19)

where,

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (20)

and,

B =

(∆t)2

2m 0
0 (∆t)2

2m
∆t
m 0
0 ∆t

m

 (21)

where, m, is the mass of the point (taken to be 1 in simulations) and ∆t is the time step for
Euler integration (which, as mentioned above, was taken to be 20 ms). In the case of the

9

point-mass we compute the observed state, y(t), operated on by the cost function via the
identity, y(t) = g(x(t)) = I · x(t), where I is the 4 × 4 identity matrix.

Supplemental References:

Batschelet, E. (1981). Circular Statistics in Biology. New York: Academic Press.

Brown, I.E., Cheng, E.J., Loeb, G.E. (1999). Measured and modeled properties of mammalian
skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity rela-
tionships. J. Muscle Res. Cell Motil. 20, 627-643.

Cheng, E.J., Scott, S.H. (2000). Morphometry of Macaca Mulatta Forelimb. I. Shoulder and
elbow muscles and segment inertial parameters. J. Morphol. 245, 206-224.

Graham, K.M., Scott, S.H. (2003). Morphometry of Macaca Mulatta Forelimb. III. Moment arm
of Shoulder and Elbow Muscles. J. Morphol. 255, 301-314.

Kurtzer, I., Herter, T.M., Scott, S.H. (2006) Nonuniform distribution of reach-related and torque-
related activity in upper arm muscles and neurons of primary motor cortex. J. Neurophysiol.
96, 3220-3230.

Li, W., Todorov, E. (2004). Iterative linear-quadratic regulator design for nonlinear biological
movement systems. In proceedings of the 1st International Conference on Informatics in Con-
trol, Automation and Robotics, vol 1, 222-229.

Shah, A., Fagg, A.H., Barto, A.G. (2004). Cortical involvement in the recruitment of wrist
muscles. J. Neurophysiol. 91, 2445-2456.

Trainin, E., Meir, R., Karniel, A. (2007). Explaining patterns of neural activity in the primary
motor cortex using spinal cord and limb biomechanics models. J. Neurophysiol. 97, 3736-
3750.

10

